Crypto Authentication™
Firmware Protection

Atmel...Everywhere You Are...Securely
Crypto Products

CRYPTOAUTHENTICATION

Agenda

- Device basics
 - Keys and OTP fuses
 - Operational block diagram
- Firmware protection
- Categorizing Protection
 - Protecting the question answer process
 - Firmware Updates
 - Network connected
 - Encryption and other runtime protection
 - Physical Protection
CRYPTOAUTHENTICATION

Device Basics
SA102S/10HS Secret Keys

<table>
<thead>
<tr>
<th>Secret Keys</th>
<th>0xFFFF</th>
<th>0x3B 4A FD 79 C4 C8 78 25 A6 E9 AF D7 0F 2E D9 6E 3C 15 24 D3 EE 55 F6 D6 C8 86 F2 A0 2F B0 F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xA04D</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>0xE065</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>0x13E7</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>.....</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

- Secret Keys hidden in Metal layers
- Never readable by any means
- Commands references Keys by index value
- Key provided to customer
 - Securely transmitted to customer by Atmel
 - One key provided to each customer
- Key 0xFFFF is published for testing,
 - The displayed value is correct for the first released SA102S Test parts
SA102S/10HS Fuse Mapping

SA102 Fuse Map

Read Address 0x00	0 – 15	0x00 0x0F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Read Address 0x01	0x10 0x1F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
32 – 47	0x20 0x2F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
48 – 63	0x30 0x3F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Read Address 0x02	64 – 79	0x40 0x4F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
80 – 95	0x50 0x5F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Read Address 0x03	96 – 111	0x60 0x6F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
112 – 127	0x70 0x7F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Fuse

- **1**: BurnFuse Disable
- **0, 2 → 63**: Secret Fuses
- **64 → 86**: Status Fuses
- **87**: BurnSecure Disable
- **88 → 95**: Fuse MfgID
- **96 → 127**: Fuse SN

September 09

Why a hardware device

- Add CryptoAuthentication based security
 - Strong security with 256 bit key & SHA-256 standard algorithm
 - Hardware-based authentication utilizes keys that NEVER leave the secure hardware crypto-logic and so are always hidden from attacks

- Software is never a valid solution
 - If it can be read it can be attacked

Detecting keys in software or on storage devices
Firmware Protection

- Secure Microprocessors are the only 100% Solution
- Adequate level of security in 1995
 - Not be a challenge to a entry level hacker
 - Security is a path not a destination
- There is always a higher level of protection to be achieved
Firmware Protection Solutions Approach

- Provide an Implementation based on
 - Utilizing one secure hardware device
 - Provide an continuous structure to increase security

- Provide security in Categories and Levels
 - Best solution implements features of all categories
 - Designers should always have the next level of security identified and ready to implement.
Categorizing Protection

Software/Firmware protection using CryptoAuthentication

- **Category I**: How to protect the question – answer process
- **Category II**: Updating source to augment security configurations
- **Category III**: Securing Internet or Network connected systems
- **Category IV**: Using Encryption and other Run-time Anti-clone techniques
- **Category V**: Implementing Physical security as a top line defense

Software/Firmware protection Taxonomy using CryptoAuthentication

Software / firmware Run-time Encryption and Anti-Cloning techniques
Category I
Protecting the question answer process

- Level One – single challenge response to device
- Level Two – Make numerous challenge and responses
- Level Three – examine methods of obfuscating the calls.
 - Example: firmware makes 10 calls to the security device use the 2nd response, XOR its value with the 5th response and then use that calculated value as the 9th challenge.
Category II
Firmware Updates

- Updating source to augment security configurations
- Level One – Change the single challenge and response with each upgrade
- Level Two – Change the locations of multiple challenge-response calls within the firmware or change challenge response strategies
- Advanced levels
 - use runtime components
 - Add Verification of download
 - Encrypt update
- Sends all current cloned devices back to ground zero
Per use direct connection to remote trusted system

- **Level One** – Maintain a list of challenge-response pairs that change when connected to network, docking station, charger, PC, etc.
- **Level Two** – send verify message over network directly to remote system.
- **Advanced levels**
 - Remote resource logon
 - Help desk call in application
 - Encrypt content from remote system for individual product

- **Blacklist/Whitelist accessories , or Identify user tamper attempts.**
Category IV
Encryption and other runtime protection
Facilitating Key exchange

Advantages
- Streamlined
- Changing AES keys
Category IV
Encryption and other runtime protection

- Encrypted blocks of code that are decrypted at runtime prior to executing
 - Level one – encrypt some or all of the firmware and decrypt at runtime
 - Level two – Encrypt multiple blocks of code each with different random challenges
 - Advanced levels – Obfuscate Encryption schema
 - Many blocks throughout the code
 - Blocks within blocks
 - Some blocks in rarely executed code
 - Decoy or non used blocks
Physical protection

- Physical security of Host device
- CryptoAuthentication has no markings on package or Die
- Materials that protect or obfuscate physical board attacks
- Remove all device markings
- Control user access to systems
 - Physical tampers
 - High cost devices contain root of security
Additional uses

Once the CryptoAuthentication device is installed it can be used later for adding security features

- Enable call center to remotely authenticate user prior to rendering service.
- Authenticate hardware or daughter cards
- Authenticating Battery packs
- Remote network logon or individual user authentication
- Encrypt confidential files produced by embedded systems
- Authenticate wireless nodes or encrypt communication between wireless nodes
- Authenticating nodes for devices communicating over power lines
Questions?