

32-bit
Microcontrollers

Application Note

Rev. 32074A-AVR-12/07

AVR32006 : Getting started with GCC for AVR32

Features
• This guide will give some tips and tricks for using the GNU Compiler Collection

(GCC) for developing C/C++ code for AVR32.
• Optimization techniques for the compiler and linker is also provided
• The guide applies to versions of GCC for AVR32 >=4.2.1.

1 Introduction
The goal of this guide is to quickly enlighten the developer on best practices for the
development of code for AVR®32 microcontrollers, as well as giving some pointers
to specific features of GCC relevant to AVR32. Most of the information in this
document is available in the GCC manual (which is usually a part of the GCC
installation)

Note that when referring to commands in the AVR32 GNU toolchain we use the
avr32-<command> form in the rest of this guide. If using the toolchain built for an
AVR32 Linux® target, these commands should be replaced with avr32-linux-
<command>.

2 AVR32006
32074A-AVR-12/07

1.1 Command line options
This document refers to command line options of GCC and will explain the relevant
command line options for controlling code generation as well as explaining some of
the best practices when compiling source code for an AVR32 microcontroller

1.2 Generating optimised code
GCC has an extensive set of options for code-generateion, but for most users only a
few options are really necessary.

When it comes to optimization there is a general switch ‘-O<optimization_level>’
which specifies the level of optimisation used when generating the code:

Table 1-1. Generic optimization flags to gcc
Option Function

-Os
Signal that the generated code should be optimised for code size. The compiler will not care
about the execution performance of the generated code.

-O0
No optimisation. This is the default. GCC will generate code that is easy to debug but slower
and larger than with the incremental optimization levels outlined below.

-O1 or -O

This will optimise the code for both speed and size. Most statements will be executed in the
same order as in the C/C++ code and most variables can be found in the generated code.
This makes the code quite suitable for debugging.

-O2

Turn on most optimizations in GCC except for some optimisations that might drastically
increase code size. This also enables instruction scheduling, which allows instructions to be
shuffled around to minimize CPU stall cycles because of data hazards and dependencies, for
CPU architectures that might benefit from this. Overall this option makes the code quite small
and fast, but hard to debug.

-O3

Turn on some extra performance optimisations that might drastically increase code size but
increase performance compared to the -O2 and -O1 optimization levels. This includes
performing function inlining

Table 2 Additional optimization flags for GCC
Option Function

-funroll-loops

If code size is not a concern then some extra performance might be obtained by making gcc
unroll loops by using the ‘-funroll-loops’’ switch in addition to the ‘-O3’ switch.

-ffunction-sections -fdata-
sections ;

When code size is a great concern it is often helpful to be able to remove unused code and
data from the final linked program. The GNU linker has support for this by performing
garbage collecting at the time of linking if invoked with the ‘--gc-sections’ option. This will
cause the linker to remove unused sections from the final linked program. In order to get
garbage collection granularity on a function or data item level, the switches ‘-ffunction-
sections’ and ‘-fdata-sections’ can be given to GCC. This will cause each function or data
item to be placed in its own section, which means that if the function or data item is unused it
can be removed from the final linked program. This is especially useful when compiling files
for big libraries where we do not want to include unused functions or data in the linked
executable

 AVR32006

 3

32074A-AVR-12/07

Option Function

-fno-common –fsection-anchors

By default GCC uses common symbols for declaring global un-initialised variables. This has
the advantage that if several common symbols with the same name exist, they will be
merged together at link time. The disadvantage is that GCC then has no control over where
the symbol will be placed relative to other symbols. Letting GCC know the relative placement
of global variables declared in the same file as where they are used will cause GCC to take
more advantage of section anchors. Section anchors are enabled with the ‘-fsection-anchors’
switch or by specifying any optimisation options other than the default ‘-O1’ for the AVR32.
Normally when GCC creates code for accessing global or static variables in memory it first
need to get the address of this variable into a register. This can be done with the ‘lda.w’
pseudo instruction, which we will come back to when discussing linker relaxing. When we
have the address GCC can insert a memory access instruction to access the variable. If we
are accessing several global or static variables in the same function and GCC knows where
these variables will be placed relative to each other, then it would be more optimal to get the
address of one of the variables and then access the other variables by just adding an offset
to this address. This is what section anchoring does, and the address from where all the
variables can be accessed by using an offset is called the section anchor.

This means that disabling the use of common symbols by using the ‘-fno-common’ switch will
often lead to better code when section anchors are used and the code uses many un-
initialised global variables. Note that using the ‘-fdata-section’ switch will clobber GCC’s
section anchor optimisations since each variable will get its own section and GCC will no
longer know the relative position of the variables.

-ffast-math -mfast-float

When using floating-point computations in your code it is often not necessary to be fully
IEEE® 754 compliant with regards to rounding and handling of special numbers like +/- 0.0,
Inf and NaN. This special handling often creates a significant overhead on the floating-point
operations generated by GCC. The ‘-ffast-math’ switch makes GCC able to optimise floating-
point code to some degree at the cost of not being fully IEEE compliant, but good enough for
most applications. The switch ‘–mfast-float’, which is an AVR32 specific switch, causes fast,
non-ieee compliant versions of some of the optimised AVR32 floating-point library functions
to be used. This switch is by default enabled if the ‘-ffast-math’ switch is used.

-masm-addr-pseudos

This option is enabled by default and causes GCC to output the pseudo instructions call and
lda.w for calling direct functions and loading symbol addresses respectively. It can be turned
off by specifying the switch ‘-mno-asm-addr-pseudos’ The advantage of using these pseudo-
instructions is that the linker can optimise these instructions at link time if linker relaxing is
enabled. The ‘-mrelax’ option can be passed to GCC to signal to the assembler that it should
generate a relaxable object file.

-mimm-in-const-pool

When GCC needs to move immediate values not suitable for a single move instruction into a
register, it has two possible choices; it can put the constant into the code somewhere near
the current instruction (the constant pool) and then use a single load instruction to load the
value or it can use two immediate instruction for loading the value directly without using a
memory load. If a load from the code memory is faster than executing two simple one-cycle
immediate instructions, then putting these immediate values into the constant pool will be
most optimal for speed. This is often true for MCU architectures implementing an instruction
cache, whereas architectures with code executing from internal flash will probably need
several cycles for loading values from code memory.

By default GCC will use the constant pool for AVR32 products with an instruction cache and
two immediate instructions for flashbased MCUs. This can be overridden by using the option
‘-mimm-in-const-pool’ or its negated option ‘-mno-imm-in-const-pool’.

4 AVR32006
32074A-AVR-12/07

Option Function

-muse-rodata-section

By default GCC will output read-only data into the code (.text) section. If the code memory is
slow it might be more optimal for performance to put read-only data into another faster
memory, if available. This can be done by specifying the switch ‘-muse-rodata-section’ which
makes GCC put read-only data into the .rodata section. Then the linker file can specify where
the content of the .rodata section should be placed. For systems running code from flash this
might however mean that the read-only data must be placed in flash and then copied over to
another memory at startup, which means that extra memory usage is required with this
scheme.

2 Linker Relaxing
When GCC converts source code to assembly instructions, information about symbol
location is missing. This is not know until after linking, which means that GCC must
be pessimistic and always assume a worst-case when selecting instructions
depending on the address of a symbol.

An example is loading the address of a symbol into a register. GCC does not know
what address the symbol will get after the link-stage, so a single move instruction can
not be used. A move instruction (mov) can only accept immediate integer values
ranging from -1048576 to 1048575. Loading the symbol from the constant pool1 or
use two instructions must be done. This is not as effective / fast as a single move
instruction.

GCC can not do this optimisation, so Atmel made it possible for the linker do it. This is
done by making GCC output the pseudo instructions lda.w, to load a symbol address,
and call, for making a call to the address of a symbol. The linker can then, if the input
file is tagged as relaxable, convert a pseudo instruction into the best possible
instruction with regards to the final symbol address.

This is called linker relaxing. It makes it possible to convert a call into an rcall
instruction if the distance to the called function is close enough to the calling
instruction, or it can convert an lda.w into an immediate subtraction relative to the
address of the instruction, if the address of the symbol is close enough to allow this,
or into an immediate move instruction if theabsolute symbol-address allows this. To
enable the linker to convert an lda.w into an immediate move instruction, the option
‘—direct-data’ must be given to the linker.

Linker relaxing is enabled in the linker by passing the ‘—relax’ option to the linker. If
using GCC as a frontend for the linker, this option is automatically passed to the linker
when using ‘-O2’ or ‘-O3’ or explicitly using the ‘-mrelax’ option. Marking the output
objects from GCC as relaxable is done by giving the assembler the ‘--linkrelax’ option.
This option is automatically passed on to the assembler from GCC when using ‘-O2’
or ‘-O3’ or explicitly using the ‘-mrelax’ option.

1 When compiling Position Independent Code (PIC) by using the ‘–fpic’ switch
or using the avr32-linux toolchain this is not entirely true since symbols addresses are
accessed vie the Global Offset Table (GOT)

 AVR32006

 5

32074A-AVR-12/07

3 Debugging
GCC for AVR32 uses the Dwarf 2 standard for attaching debugging information to the
generated code. Using the -g switch when invoking GCC enables this debug info. For
ease of debugging it is recommended to not turn on too much code optimisation in
GCC when compiling for debugging.

It is, however, possible to debug even if full optimisation is turned on. Problems such
as variables that the compiler optimised away can then be unavailable, functions
that are inlined and statements that are executed completely out of order or even
optimised away. When linker relaxing is enabled it can be very hard to debug since
the address of instructions can be changed by the linker. The linker can insert,
remove or change the size of certain instructions. This can cause the source code to
seem completely uncorrelated with the instructions being executed.

When debugging, it can sometimes be useful to see the assembly code generated by
GCC, interleaved with the source code, in a listing file. Making GCC pass a special
option further to the assembler to signal that a listing output should be generated can
do this.

To make GCC pass options further to the assembler is done by using the ‘-
Wa,<assembler-option>’ option. The option for making the assembler generate a
listing containing the high level source-code interleaved with the generated assembly
code is done with the option ‘-ahl=<listing-file>’. Thus, for generating the listing file
foo.lst the following option has to be given to GCC: ‘-Wa,-ahl=foo.lst’. Generating a
listing containing source code and assembly instructions does, of course, require that
debug info is enabled when invoking GCC by using the ‘-g’ option.

The listings generated by the assembler do not contain any information on where the
generated instructions are placed in memory. This is not known until after linking.
Also, the pseudo instructions lda.w and call are not real instructions and we do not
know which real instructions these will be replaced with until after linking. To make a
listing showing the source code interleaved with the assembly code from the finally
linked executable is possible by using the avr32-objdump utility (available in tehe
binutils package). This can be done if the output executable from the linker is an Elf
file, which is the default output format, containing debug information. Just run ‘avr32-
objdump –S <elf-file>’ and you will get the listing of the complete program with the
address location of each instruction.

4 AVR32 specific features in GCC
In addition to support standard C/C++ source code, GCC for AVR32 has some extra
AVR32 specific features to allow easier access to the optimized AVR32 instruction set
and architecture. This applies particularly to the Digital Signal Processing (DSP) and
parallel execution instructions (Single Instruction Multiple Data – SIMD). They come
in the form of attributes and builtins to the GNU Compiler.

4.1 Attributes
An attribute is a GCC extension that can be applied to functions or variables to
specify non-standard handling of their implementation. The syntax for an attribute is
the following:

6 AVR32006
32074A-AVR-12/07

__attribute__((<attribute-name>(<attribute-argument>)))

4.1.1 interrupt

The interrupt function-attribute is used to signal that a function is an interrupt handler.
The difference in the generated code from an ordinary function is that a function
tagged with the interrupt attribute will return using a rete instruction and has a
different scheme for pushing needed registers on the stack. The interrupt attribute
takes an optional argument specifying the shadow-register mode for the interrupt.
Registers that are shadowed is not required to be saved on the stack before being
used in the function. The AVR32 architecture has three possible shadowing modes:
full, half or none2. Specifying no argument to the attribute defaults to none. Writing an
interrupt handler function for an interrupt with half shadow mode can then be done
like this:

 __attribute__((interrupt("half"))) void bar(void) {
… }

Note that the EVBA system register and the interrupt controller must be set up before
actually starting to use interrupts..

4.1.2 naked

The naked function-attribute is used for functions where GCC should not output any
prologue or epilogue. This can be used when writing a complete function with inline
assembly and the programmerneeds to handle the prologue and epilogue. An
example of a naked function with just a nop and ret instruction return the value of the
input argument:

 __attribute__((naked)) void foobar(int a)

{
 asm volatile (“nop; ret r12”);
}

This example function will output nothing more than a nop and ret instruction, no
prologue and epilogue.

4.2 Built-in functions
Sometimes the user might want to force the insertion of special instructions into the
code generated by GCC. It may be for inserting system specific operations not
possible to describe in C/C++ or for inserting optimum instructions for operations hard
to express or for the compiler to recognize in C/C++. This is what GCC built-in
functions are there for.

Calling a built-in function looks like a normal function-call but really expands to one or
more inlined instructions for performing the given built-in operation. GCC comes with
a number of target independent built-in functions that can be really handy for the
programmer.

2 See the AVR32 architecture manual for a description of the shadowing
modes, and the technical reference manuals for the shadowing modes implemented
for a given part.

 AVR32006

 7

32074A-AVR-12/07

GCC for AVR32 also includes some AVR32 specific built-in functions for inserting
special instructions from the AVR32 instruction set. The advantage of built-in
functions is that it is easy to use from C/C++ code while still giving the power and low-
level control as you get in assembly programming. Most of these built-in functions
could also be implemented with inline assembly, but it is generally better to use built-
in functions because inline assembly gives GCC no idea aboutwhich instructions are
inserted, whereas built-in functions provides this information.

Here is a list of all the AVR32 specific built-ins function that corresponds to a single
instruction:

int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/)
int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/)
int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/)
int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/)
short __builtin_mulsathh_h (short, short)
int __builtin_mulsathh_w (short, short)
short __builtin_mulsatrndhh_h (short, short)
int __builtin_mulsatrndwh_w (int, short)
int __builtin_mulsatwh_w (int, short)
int __builtin_macsathh_w (int, short, short)
short __builtin_satadd_h (short, short)
short __builtin_satsub_h (short, short)
int __builtin_satadd_w (int, int)
int __builtin_satsub_w (int, int)
long long __builtin_mulwh_d(int, short)
long long __builtin_mulnwh_d(int, short)
long long __builtin_macwh_d(long long, int, short)
long long __builtin_machh_d(long long, short, short)

void __builtin_musfr(int);
int __builtin_mustr(void);
int __builtin_mfsr(int /*Status Register Address*/)
void __builtin_mtsr(int /*Status Register Address*/, int
/*Value*/)
int __builtin_mfdr(int /*Debug Register Address*/)
void __builtin_mtdr(int /*Debug Register Address*/, int
/*Value*/)
void __builtin_cache(void * /*Address*/, int /*Cache
Operation*/)
void __builtin_sync(int /*Sync Operation*/)
void __builtin_tlbr(void)
void __builtin_tlbs(void)
void __builtin_tlbw(void)
void __builtin_breakpoint(void)
int __builtin_xchg(void * /*Address*/, int /*Value*/)
void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/,
int/*cry*/, int/*op*/)
int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/)
void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/,
int/*value*/)
long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/)
void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long,
long/*value*/)

8 AVR32006
32074A-AVR-12/07

The semantics as well as the input and output operands for all these built-in functions
is explained in the AVR32 architecture manual, by looking at the semantics of the
functionheader after removing __builtin

4.3 Byteswapping
GCC provides two built-in functions for byte- swapping. This does not map to a single
instruction but selects which instruction to insert depending on the input or output
operands being stored in registers or memory. The bswap_16 built-in swaps bytes in
a 16-bit halfword while bswap_32 swaps bytes in a 32-bit word:

short __builtin_bswap_16(short)
int __builtin_bswap_32(int)

In addition GCC has some generic built-in functions; __builtin_ffs, __builtin_clz and
__builtin_ctz that utilizes instructions such as clz and brev for AVR32 targets.

4.4 Atomic instructions
AVR32 GCC also has support for the atomic built-ins provided by GCC. These can be
used to implement atomic operations on memory, which is useful in operating
systems for handling synchronization between processes. These builtin functions
make use of the stcond and xchg instructions for the AVR32 architecture. These
instructions have been designed with these types of operations in mind. Some of the
available atomic operations are:

int __sync_fetch_and_<op> (int *ptr, int value)
int __sync_<op>_and_fetch (int *ptr, int value)
bool __sync_bool_compare_and_swap (int *ptr, int oldval,

int newval)
int __sync_val_compare_and_swap (int *ptr, int oldval,

int newval)
int __sync_lock_test_and_set (int *ptr, int value)

Where <op> denotes the operations: add, sub, or, and, xor and nand.

Documentation of the builtin functions can be found under various chapters in the
GCC manual. Examples are found in:“Extensions to the C Language Family” ,“Built-in
functions for atomic memory access”, “Other built-in functions provided by GCC” and
“Built-in Functions Specific to Particular Target Machines”.

4.5 Inline Assembly
GCC supports using inline assembly, which means that you can freely mix C/C++
code with assembly code in your source code. You can pass data back and forth
between variables in C/C++ and low-level instructions in assembly.

The inline assembly syntax is:

asm ("<assembly-code>" : "<constraint>" (<output-variable>),
"<constraint>" (<output-variable2>),
 …

 "<constraint>" (<output-variablen>)
: "<constraint>" (<input-variable>),

 AVR32006

 9

32074A-AVR-12/07

"<constraint>" (<input-variable2>),
 …
"<constraint>" (<input-variablen>)
: "<clobber1>" … "<clobbern>");

Where a constraint is a code for what type of operand is allowed for the given
operand in the inline assembly expression. A detailed description of constraints is
given in the chapter “Constraints for asm Operands” in the GCC manual. Operands
are referred to with %<operand-number> where the operand-number is the number of
the operand in the operand list.

Here is an example of using inline assembly to use the macwh.d instruction:

 static inline long long macwh_d (long long acc,

 int a, short b)
 {
 asm ("mulwh.d %0, %1, %2" : "+r"(acc)
 : "r" (a),
 "r" (b));
 return acc;
 }

Here we have used the most common constraint, ‘r’, which means that the operand
needs to be in a register. Normally output operands need an ‘=’ character before the
constraint character to specify that the operand is an output, but in this case the acc
output operand is both an input and output so the ‘+’ character should be used
instead.

For a more detailed description of inline assembly see the chapter “Assembler
Instructions with C Expression Operands” in the GCC manual.

5 From source-code to executable
The process of going from source code to a final executable program is quite simple.
First all source code files have to be compiled, in order to be converted to assembly
code. The assembler then converts the generated assembly code to object files. All
object files are then linked together by the linker to produce the final executable
program. Here we will learn that flexibility of the avr32-gcc command that can be used
as a wrapper for all these tasks.

5.1 Compiling
Using the avr32-gcc command invokes the GCC for AVR32 compiler. The path to the
source file(s) is given as input to the command. The avr32-gcc command is really a
front-end for some underlying tools.

First the avr32-gcc command calls the pre-processor that parses all pre-processor
directives. Then, unless given the ‘-E’ switch, which tells avr32-gcc to only pre-
process, it calls the actual compiler that converts C/C++ code to assembly
instructions.

10 AVR32006
32074A-AVR-12/07

Next, the assembler is called, unless the ‘-S’ switch is given, which tells avr32-gcc to
only generate assembly output, and generates an object file. If not using the ‘-c’
switch, avr32-gcc will even execute the linker

Invoking avr32-gcc can actually do the whole process of compiling, assembling and
linking.

Here is an example of compiling one of the two files in the commonly used dhrystone
benchmark. We are compiling dhry_1.c in order to make the output object file
dhry_1.o:

avr32-gcc –c –g –O3 -fno-common -funroll-loops –Wa,-ahl=dhry_1.lst dhry_1.c –o
dhry_1.o

Note the use of optimisation options and that we are signalling that debugging info
should be included in the generated object file. With the ‘-c’ option we are telling the
avr32-gcc front-end not to call the linker and just to invoke the assembler in order to
produce an object file output. We have also added an option for making the
assembler output a listing with interleaved source and assembly code in the file
dhry_1.lst.

When compiling C++ sources the command avr32-g++ can also be used. This
command will by default treat .c and .h files as C++ sources.

5.2 Assembling
As you have seen, the assembler does not need to be invoked directly when
compiling source code with avr32-gcc. The avr32-gcc command can take care of this.
If assembling hand-written assembly code, the assembler can be invoked directly by
using the avr32-as command. The avr32-gcc command can however also be used for
this task.

All files with ending ‘.S’ and ‘.s’ will be treated as assembly files and compilation will
be skipped and the assembler will be called directly. For ‘.S’ files the C pre-processor
will also be invoked, which means that it is possible to use pre-processing directives
in these types of files.

5.3 Linking
Linking canbe invoked with the avr32-gcc command. If invoked without the ‘-c’ option,
avr32-gcc will try to link together all the files specified as input. If not all input files are
object files it will first try to compile and/or assemble any C/C++ or assembly files
based on the filetype guessed from the filename before calling the linker.

5.3.1 Default linker options

When avr32-gcc is used as a front-end for linking it will by default include the GCC
runtime library (libgcc), C-library (libc), a startup file (typically crt0.o) and some other
files required at runtime by GCC. The GCC runtime library is required by GCC for
some operations that need library calls, such as floating-point operations etc. The C-
library is required if using any of the C-library functions in your program. The startup
file is responsible for doing any initialisation needed, such as clearing un-initialised
variables, setting the stack-pointer etc., before calling the main function of the
program.

 AVR32006

 11

32074A-AVR-12/07

The linker can be called directly by using the avr32-ld command, but then the user is
responsible to provide all the needed libraries and object files needed for the linking
to succeed. This can often be practical for small assembly-code where no runtime
library or C-library is needed.

5.3.2 Linker scripts

The linking process needs information about code and data memory location. Using a
linker script provides this. If specifying which device you are compiling code for by
using the ‘-mpart=<part>’ option in avr32-gcc, a default linker script for that device
will be used.

These linker scripts can be found under the avr32/lib/ldscripts folder of your
installation. If you have special needs and the default linker script is not working for
your project, you can specify your own linker script to the linker. This can be done by
using the ‘-T<linker-script>’ option to avr32-ld.

If using avr32-gcc for linking the option for passing parameters to the linker ‘-
Wl,<linker-option>’ can be used like this: ‘-Wl,-T<linker-script>’ in order to pass the
linker script option forward to the linker. We will not go into the details of how to write
linker files scripts here. The linker manual contains a detailed description of the
powerful linker script command language. It might also be worth taking a look at the
default linker scripts used by the linker, and maybe using this as a basis if writing your
own scripts.

5.3.3 Linking C++ object code

When linking (and compiling) C++ programs, the avr32-g++ command is invoked.
This command will automatically add the C++ library (libstdc++), which is most likely
required by your C++ code, in addition to the other libraries avr32-gcc adds when
linking.

6 Example use of GCC
Here is an example of linking the two files of the Dhrystone benchmark into a final
executable by using the avr32-gcc command:

avr32-gcc –O3 –Wl,--direct-data dhry_1.o dhry_2.o –o dhry.elf

Specifying the ‘-O3’ to avr32-gcc causes the ´--relax’ option to be passed on to the
linker. This could also have been done by omitting ‘-O3’ and using ‘-mrelax’ instead.

Optimization the Dhrystone application even more is done by invoking more
optimization options:

avr32-gcc –c –g –O3 -fno-common -funroll-loops –Wl,--direct-data dhry_1.c dhry_2.c
–o dhry.elf

Refer to the above chapter for an explanation of the options.

12 AVR32006
32074A-AVR-12/07

7 Optimizations and results on the Dhrystone benchmark
We have used the Dhrystone benchmark as an example on the effects of using the
different optimisation options. We have compiled the benchmark for the AVR32 UC3
architecture with different optimisation options3:

Table 7-1. Results of optimization flags on the Dhrystone benchmark

GCC options
Linker options Dhrystone MIPS / MHz Code size

dhry_1.c
Code size
dhry_2.c

-Os –fno-common 0,93 2892 258
-O0 0,47 3612 926
-O1 –fno-common 0,9 3136 310
-O2 –fno-common 1,08 3128 314
-03 –fno-common 1,26 3288 290
-03 –fno-common –funroll-loops 1,27 3288 286
-03 –fno-common –funroll-loops --relax 1,35 3288 286
-03 –fno-common –funroll-loops --relax –direct-data 1,38 3288 286

Notice the large code size and bad performance when using no optimisation (‘-O0’).
Using no optimisation should really just be used for debugging as can be clearly seen
here. We can also see that when optimising for code size, the performance is in
between what we get with ‘-O1’ and ‘-O2’. Also take notice the extra performance
gain we get when enabling linker relaxing and direct-data in the linker.

Using the ‘-ffunction-sections’ GCC option and the linker option ‘--gc-sections’ when
compiling and linking dhrystone gave a size reduction on about 8-9% for the final
executable when linking with the newlib c-library and GCC runtime library. The newlib
library has already been compiled with the ‘-ffunction-sections’ option, so using the
garbage collector in the linker to remove unused sections was able to remove some
unused functions.

These numbers were obtained by running with code in embedded flash using 0 Wait-
States and data in embedded SRAM. The flash-controller master is set to last default
configuration in the HMATRIX.

The code size here is before linking, taken from the object files. When turning on
linker relaxing, the code size may actually become smaller in the final executable.

3 We used the 1.3.2-0 version of the free AVR32 GNU toolchain from Atmel
when compiling this benchmark.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32074A-AVR-12/07

	1 Introduction
	1.1 Command line options
	1.2 Generating optimised code

	2 Linker Relaxing
	3 Debugging
	4 AVR32 specific features in GCC
	4.1 Attributes
	4.1.1 interrupt
	4.1.2 naked

	4.2 Built-in functions
	4.3 Byteswapping
	4.4 Atomic instructions
	4.5 Inline Assembly

	5 From source-code to executable
	5.1 Compiling
	5.2 Assembling
	5.3 Linking
	5.3.1 Default linker options
	5.3.2 Linker scripts
	5.3.3 Linking C++ object code

	6 Example use of GCC
	7 Optimizations and results on the Dhrystone benchmark

