Selecting the Best Serial EEPROM Interface Protocol for your Application

1. Introduction

- Atmel offers Serial Electrically Erasable Programmable Read Only Memories (SEEPROM) to designers wanting to save Printed Circuit Board Assembly (PCBA) area and simplify hardware design. Serial refers to the hardware interface scheme to write and read data from the device (two, three, or four signals needed). The parallel interface scheme to write and read data involves 18 or more signals. SEEPROM devices are 8 pin packages compared to 20 or more pins on parallel interface EEPROM devices. Since SEEPROMs have a smaller pin count than parallel EEPROMS, the SEEPROM device packages are smaller and therefore save PCBA area that would be consumed by the physically larger parallel EEPROM devices. Since SEEPROMS have a smaller pin count on device packages than parallel EEPROMS, there are fewer signals to route in the PCBA design.

- When an SEEPROM solution is desired, more decisions are needed to direct the designer to the best device for the application. The interface protocol decision is quite often driven by hardware and software features of the microcontroller that is to be interfaced to the SEEPROM. Atmel offers three protocol families of SEEPROMs:
 1. 2-Wire Interface (TWI) in the AT24CXXXX family [compatible with I2C protocol]
 2. 3-Wire Interface (3WI) in the AT93CXXX family
 3. Serial Peripheral Interface (SPI) in the AT25XXXX family

- The following device features will be discussed should the designer have the freedom to choose the interface protocol:
 - Interface signals
 - Chip Selection signal
 - Memory expansion
 - Maximum interface clock speeds
 - Command complexity
 - Write protection / data security
 - Cost

1.1. Interface Signals

TWI: a clock signal and a bi-directional data signal (SCL, SDA)

3WI: a clock signal, a data in signal, and a data out signal (SK, DI, DO) [Chip Select is needed also]

SPI: a chip select signal, a clock signal, a data in signal, and a data out signal (CS, SCK, SI, SO)

TWI fewest, 3WI and SPI have the same
1.2. **Chip Select Function**

TWI: has no chip select (CS) signal, always listening for commands

3WI: CS is active high; CS must be high for device to listen for commands

SPI: CS is active low; CS must be low for device to listen for commands

TWI does not need it, 3WI and SPI both have CS

1.3. **Memory Expansion**

TWI: slave addressing supported (cascading), maximum 8 devices dependent upon device memory size

3WI: utilizing independent chip selects, the SK, DI, and DO signals of multiple devices can be bussed

SPI: utilizing independent chip selects, the SCK, SI, and SO signals of multiple devices can be bussed

TWI supports cascading, 3WI and SPI support bussing

1.4. **Maximum Interface Clock Speed**

TWI: 1MHz

3WI: 2MHz

SPI: 20MHz

SPI fastest, 3WI next, TWI is slowest

1.5. **Command Complexity**

TWI: Write Operation:
Send Start bit
Send device address byte with write bit embedded
Send word address byte
Send data byte(s) for byte write or page write
Send Stop bit to start write cycle

Read Operation:
Send Start bit
Send device address byte with write bit embedded (dummy write sequence)
Send device word address
Send device address byte with read bit embedded
Receive data byte(s)
Send Stop bit

3WI: Write Operation:
Enable device via chip select high
Send write enable op code
Disable device via chip select low
Enable device via chip select high
Send write op code with address
Send data byte/word
Write cycle begins
Disable device via chip select low
Read Operation:
Enable device via chip select high
Send read op code with address
Receive data byte(s)
Disable device via chip select low

SPI:
Write Operation:
Enable device via chip select low
Send write enable op code
Disable device via chip select high
Enable device via chip select low
Send write op code with address
Send data byte(s) for byte write or page write
Disable device via chip select high

Read Operation:
Enable device via chip select low
Send read op code with address
Receive data byte(s)
Disable device via chip select high

TWI command syntax is the simplest and supports byte and page writes.
3WI command syntax is more complex than TWI but 3WI only supports byte/word modes.
SPI command syntax is more complex than TWI and supports both byte and page writes.

1.6. Write Protection / Data Security

TWI: Write Protect (WP) signal (active high) driven high: all, half, or a quarter of the memory array can be protected dependent upon device features

3WI: Write Enable op code, Write Disable op code

SPI: WP signal (active low) driven low: the memory array can not be written into when status register has WPEN bit set to “1”
WP signal (active low) driven high: the memory array can be written into if status register has WPEN bit set to “0”
Status register bits can be set on command to select none, a quarter, a half, or all of the memory array to be protected
Since the device counts the serial clocks groups of eight, clock count mismatches cause commands to be aborted.

TWI has hardware write protection data security only
3WI has software write protection data security only
SPI has hardware write protection data security that be overridden under software control and SPI has better protocol checking by counting clocks

1.7. Cost

TWI: Lowest expense

3WI: Low expense

SPI: Medium expense
2. **Conclusion**

 - Choose TWI if:
 1. You have only two port signals available from the microcontroller
 2. You like the simpler commands
 3. You don’t need the fastest clock speed
 4. You don’t need software override of the hardware write protection feature
 5. You need the highest density memory arrays

 - Choose 3WI if:
 1. You have four port signals available from the microcontroller
 2. You can use the more complex, two step writing commands
 3. You like the medium speed interface
 4. You don’t need hardware write protection
 5. You need the medium density memory arrays

 - Choose SPI if:
 1. You have four port signals available from the microcontroller
 2. You like the counted clock protocol verification security
 3. You need the fastest clock speed interface
 4. You like the software override of the hardware write protection
 5. You need the highest density memory arrays
3. Revision History

Table 1. Revision History

<table>
<thead>
<tr>
<th>Doc. Rev.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>8546A</td>
<td>06/2008</td>
<td>Initial document release.</td>
</tr>
</tbody>
</table>
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.