Table of Contents

Section 1
Introduction... 1-1
1.1 Overview.. 1-1
1.1.1 Features of SAM-ICE ... 1-1
1.1.2 Specification .. 1-1
1.2 Requirements... 1-2
1.2.1 Host System .. 1-2
1.2.2 Target System ... 1-2

Section 2
Hardware..2-1
2.1 JTAG Connector ... 2-1
2.1.1 Pinout .. 2-1
2.2 Debugging Multiple ARM® Cores with SAM-ICE ... 2-2

Section 3
Setup..3-1
3.1 Installing the USB Driver... 3-1
3.1.1 Verifying Correct Driver Installation ... 3-3
3.2 Debug Installation .. 3-4
3.3 Connecting the Target System .. 3-4
3.3.1 Power-on Sequence .. 3-4
3.3.2 Verifying Target Device Connection .. 3-4
3.4 Problems.. 3-4

Section 4
SAM-ICE Related Software..4-1
4.1 Overview.. 4-1
4.2 Free Software ... 4-1
4.2.1 JLink.exe (Command Line Tool).. 4-1
4.2.2 SAM-ICE TCP/IP Server (Remote SAM-ICE Use) .. 4-1
4.2.3 J-Mem Memory Viewer.. 4-2

Section 5
Frequently Asked Questions ..5-1
5.1 FAQs.. 5-1
Section 6
Support ... 6-1
 6.1 Troubleshooting .. 6-1
 6.1.1 General Procedure ... 6-1
 6.1.2 Typical Problem Scenarios ... 6-1
 6.2 Contacting Support ... 6-2

Section 7
Glossary ... 7-1
 7.1 Terminology ... 7-1

Section 8
Errata .. 8-1
 8.1 Reset Problem on the SAM-ICE V5.1 ... 8-1

Section 9
Revision History ... 9-1
 9.1 AT91SAM-ICE User Guide Revision History .. 9-1
1.1 Overview

SAM-ICE is a JTAG emulator designed for Atmel® AT91 ARM® cores. It connects via USB to a PC running Microsoft Windows 2000, Windows XP and Windows 7. SAM-ICE has a built-in 20-pin JTAG connector, which is compatible with the standard 20-pin connector defined by ARM®.

1.1.1 Features of SAM-ICE

- Any Atmel AT91 core supported, including Thumb® mode
- Seamless integration into the IAR® Workbench
- No power supply required, powered through USB
- Maximum JTAG speed 12 MHz
- Auto speed recognition
- All JTAG signals can be monitored
- Support for multiple devices
- Fully plug and play compatible
- Standard 20-pin JTAG connector
- Wide target voltage range: 1.2V to 3.3V
- USB and 20-pin ribbon cable included
- Memory viewer (J-Mem) included
- SAM-ICE TCP/IP server included, can use SAM-ICE via TCP/IP networks
- RDI server available, can use SAM-ICE with RDI compliant software
- Support for adaptive clocking

1.1.2 Specification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>USB powered < 50mA</td>
</tr>
<tr>
<td>USB Interface</td>
<td>USB 2.0, full speed</td>
</tr>
<tr>
<td>Target Interface</td>
<td>JTAG 20-pin</td>
</tr>
<tr>
<td>Serial Transfer Rate between SAM-ICE and Target</td>
<td>Up to 12 MHz</td>
</tr>
<tr>
<td>Supported Target Voltage</td>
<td>1.2V to 3.3V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>+5°C to +60°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-20°C to +65 °C</td>
</tr>
</tbody>
</table>
1.2 Requirements

1.2.1 Host System
In order to use SAM-ICE, a host system running Windows2000, WindowsXP or Windows7 with the SAM-ICE custom USB driver is required.

1.2.2 Target System
An Atmel AT91 target system is required. The system should have a 20-pin connector as defined by ARM Ltd. The individual pins are described in Section 2.1 "JTAG Connector" on page 2-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Humidity (non-condensing)</td>
<td>< 90% rH</td>
</tr>
<tr>
<td>Size (without cables)</td>
<td>100 mm x 53 mm x 27 mm</td>
</tr>
<tr>
<td>Weight (without cables)</td>
<td>70 g</td>
</tr>
<tr>
<td>Electromagnetic Compatibility (EMC)</td>
<td>EN 55022, EN 55024</td>
</tr>
<tr>
<td>Supported OS</td>
<td>Microsoft Windows2000/XP/7</td>
</tr>
</tbody>
</table>

Table 1-1. SAM-ICE Specification (Continued)
2.1 JTAG Connector

A SAM-ICE connector is a 20-way Insulation Displacement Connector (IDC) keyed box header (2.54 mm male) that mates with IDC sockets mounted on a ribbon cable.

2.1.1 Pinout

Table 2-1 lists the SAM-ICE JTAG pinout.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTref</td>
<td>Input</td>
<td>This is the target reference voltage. It is used to check if the target has power, to create the logic-level reference for the input comparators and controls the output logic levels to the target. It is normally fed from Vdd on the target board and must not have a series resistor.</td>
</tr>
<tr>
<td>2</td>
<td>Vsupply</td>
<td>NC</td>
<td>This pin is not connected in SAM-ICE. It is reserved for compatibility with other equipment. Connect to Vdd or leave open in target system.</td>
</tr>
<tr>
<td>3</td>
<td>nTRST</td>
<td>Output</td>
<td>JTAG Reset. Output from SAM-ICE to the Reset signal on the target JTAG port. Typically connected to nTRST on the target CPU. This pin is normally pulled HIGH on the target to avoid unintentional resets when there is no connection.</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>5</td>
<td>TDI</td>
<td>Output</td>
<td>JTAG data input of target CPU. It is recommended that this pin is pulled to a defined state on the target board. Typically connected to TDI on target CPU.</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>7</td>
<td>TMS</td>
<td>Output</td>
<td>JTAG mode set input of target CPU. This pin should be pulled up on the target. Typically connected to TMS on target CPU.</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>9</td>
<td>TCK</td>
<td>Output</td>
<td>JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined state on the target board. Typically connected to TCK on target CPU.</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>11</td>
<td>RTCK</td>
<td>NC</td>
<td>Input Return test clock signal from the target. Some targets must synchronize the JTAG inputs to internal clocks. To assist in meeting this requirement, a returned and retimed TCK can be used to dynamically control the TCK rate. SAM-ICE supports adaptive clocking which waits for TCK changes to be echoed correctly before making further changes. Connect to RTCK if available, otherwise to GND.</td>
</tr>
</tbody>
</table>
Table 2-1. Pinout (Continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>13</td>
<td>TDO</td>
<td>Input</td>
<td>JTAG data output from target CPU. Typically connected to TDO on target CPU.</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>15</td>
<td>RESET</td>
<td>I/O</td>
<td>Target CPU reset signal</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>NC</td>
<td>This pin is not connected in SAM-ICE.</td>
</tr>
<tr>
<td>18</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>NC</td>
<td>This pin is not connected in SAM-ICE.</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>-</td>
<td>Common ground</td>
</tr>
</tbody>
</table>

2.2 Debugging Multiple ARM® Cores with SAM-ICE

SAM-ICE can handle multicore debugging. In this case, multiple ARM chips are connected to the same JTAG connector as shown in Figure 2-1.

Figure 2-1. Multi-core Connections
3.1 Environment setup

Please read the following guidelines before you plug your SAM-ICE into your computer’s USB port.

3.1.1 Installing the software and documentation pack

SAM-ICE uses the same software as the J-LINK ARM device from Segger. We recommend that you always use the latest software distribution with your SAM-ICE device.

Up to date Software and Documentation pack should be downloaded from http://www.segger.com/jlink-software.html

Extract and run Setup_JLinkARM_V<VersionNumber>.zip on your computer. The steps to follow are simple and straightforward.

3.1.2 Verifying Correct Driver Installation

To verify the correct installation of the driver, disconnect and reconnect SAM-ICE to the USB port. During the enumeration process which takes about 2 seconds, the LED on SAM-ICE is flashing. After successful enumeration, the LED stays on permanently.

Start the provided sample application JLink.exe. JLink.exe should display the build date of the SAM-ICE firmware, the serial number, a target voltage of 0.000V if a target is not connected to SAM-ICE and the speed selection. See the screenshot below.
In addition to this you may verify the driver installation by consulting the Windows® device manager. If the driver is installed and your SAM-ICE is connected to your computer, the device manager should list the J-Link driver as a node below "Universal Serial Bus controllers" as shown in the following screenshot:

A right-click on the driver opens a context menu which contains the item "Properties". If you select this item, a new dialog is opened and should report: “This device is working properly”.

3.2 Connecting the Target System

3.2.1 Power-on Sequence

SAM-ICE must be powered on before connecting it to the target device. First, connect SAM-ICE to the host system via the USB and then connect SAM-ICE to the target device via JTAG. Power-on the device after you have connected SAM-ICE to it.

3.2.2 Verifying Target Device Connection

If the USB driver is working properly and your SAM-ICE is connected to the host system, you may connect SAM-ICE to your target hardware. Then start **JLink.exe** again; it should now display the same SAM-ICE related information as above. In addition, it should report that it found a JTAG target and the target core ID. The screenshot below shows the output of JLink.exe. As can be seen, it reports a SAM-ICE with one JTAG device connected.
3.3 Problems

For help with any of the steps described above, refer to Section 6.1 for troubleshooting tips.
4.1 Overview

Table 4-1. Available Software Packages

<table>
<thead>
<tr>
<th>Software</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JLink.exe</td>
<td>Free Command line tool with basic functionality for target analysis.</td>
</tr>
<tr>
<td>SAM-ICE TCP/IP Server</td>
<td>Free utility which provides the possibility to use SAM-ICE remotely via TCP/IP.</td>
</tr>
<tr>
<td>J-Mem memory viewer</td>
<td>Free target memory viewer. Shows the memory content of a running target and allows editing as well.</td>
</tr>
<tr>
<td>SAM-ICE ARM® Flash DLL</td>
<td>An enhanced version of the JLinkARM.DLL, which contains additional API functions for Flash programming.</td>
</tr>
<tr>
<td>RDI support</td>
<td>Provides Remote Debug Interface (RDI) support.</td>
</tr>
<tr>
<td>J-Flash</td>
<td>Stand-alone flash programming application. Requires an additional license.</td>
</tr>
<tr>
<td>Flash download</td>
<td>Flash download allows an arbitrary debugger to write into flash memory, using the J-Link flashloaders.</td>
</tr>
<tr>
<td>Flash breakpoints</td>
<td>Flash breakpoints provide the ability to set an unlimited number of software breakpoints in flash memory areas.</td>
</tr>
<tr>
<td>J-Link GDB Server</td>
<td>The J-Link GDB Server is a remote server for the GNU Debugger (GDB). Requires an additional license.</td>
</tr>
</tbody>
</table>

4.2 Free Software

Free software related to SAM-ICE ships with SAM-ICE and may also be downloaded from the web site:

http://www.segger.com

No additional license is required to use this software.

4.2.1 JLink.exe (Command Line Tool)

JLink.exe is a tool, that can be used to verify proper installation of the USB driver and to verify the connection to the ARM® chip, as well as for simple analysis of the target system. It permits some simple commands, such as memory dump, halt, step, go and ID-check, as well as some more in-depths analysis of the state of the ARM® core and the ICE breaker module.

4.2.2 SAM-ICE TCP/IP Server (Remote SAM-ICE Use)
The SAM-ICE TCP/IP server allows using SAM-ICE remotely via TCP/IP. This enables you to connect to and fully use a SAM-ICE from another computer. Performance is just slightly (about 10%) lower than with direct USB connection.

4.2.3 J-Mem Memory Viewer

J-Mem displays memory contents of ARM® systems and allows modifications of RAM and SFRs (Special function registers) while the target is running. This makes it possible to look into the memory of an ARM® chip at run time; RAM can be modified and SFRs can be written. The type of access for both read and write access can be selected to be 8/16/32 bits. This is an efficient means for modifying SFRs, in particular because it writes the SFR only after the complete value has been entered.
Section 5
Frequently Asked Questions

5.1 FAQs

- Which CPUs are supported?
 - SAM-ICE works exclusively with Atmel AT91 ARM-based microcontroller cores.

- What is the maximum JTAG speed supported by SAM-ICE?
 - The maximum supported JTAG speed is 12MHz.

- Can I access individual ICE registers via SAM-ICE?
 - Yes, you can access all individual ICE registers via SAM-ICE.

- Can SAM-ICE read back the status of the JTAG pins?
 - Yes, the status of all pins can be read. This includes the outputs of SAM-ICE as well as the supply voltage and can be useful to detect hardware problems on the target system.

- Does SAM-ICE support the embedded trace macro (ETM)?
 - No. ETM requires another connection to the ARM® chip and a CPU with built-in ETM.
Section 6
Support

6.1 Troubleshooting

6.1.1 General Procedure
If you experience problems with a SAM-ICE, follow the steps below to solve these problems:
1. Close all running applications on your host system.
2. Disconnect the SAM-ICE device from USB.
4. Re-connect SAM-ICE to host system (attach USB cable).
5. Power-on target.
6. Try your target application again. If the problem disappears, you are done; otherwise continue.
7. Close all applications running on your host system again.
8. Disconnect the SAM-ICE device from USB.
10. Re-connect SAM-ICE to host system (attach USB cable).
12. Start JLink.exe.
13. If JLink.exe reports the SAM-ICE serial number and the target processor’s core ID, the SAM-ICE is working properly and cannot be the cause of your problem.
14. If JLink.exe is unable to read the target processor’s core ID, you should analyze the communication between your target and SAM-ICE with a logic analyzer or oscilloscope.
15. If your problem persists and you own an original SAM-ICE (not an OEM version), see Section 6.2.

6.1.2 Typical Problem Scenarios

6.1.2.1 SAM-ICE LED is off

■ Meaning:
 – The USB connection does not work.

■ Corrective action:
 – Check the USB connection. Try to re-initialize SAM-ICE by disconnecting and reconnecting it. Make sure that the connectors are firmly attached. Check the cable connections on your SAM-ICE and the computer. If this does not solve the problem, please check if your cable is defective. If the USB cable is ok, try a different PC.
6.1.2.2 SAM-ICE LED is flashing at a high frequency

- Meaning:
 - SAM-ICE cannot be enumerated by the USB controller.
- Most likely causes:
 - a.) Another program is already using SAM-ICE.
 - b.) The SAM-ICE USB driver does not work correctly.
- Corrective action:
 - a.) Close all running applications and try to reinitialize SAM-ICE by disconnecting and reconnecting it.
 - b.) If the LED blinks permanently, check the correct installation of the SAM-ICE USB driver. Uninstall and reinstall the driver as shown in Section 3.

6.1.2.3 SAM-ICE does not get any connection to the target

- Most likely causes:
 - a.) The JTAG cable is defective
 - b.) The target hardware is defective
- Corrective action:
 - Follow the steps described in Section 6.1.1.

6.2 Contacting Support

Before contacting support, assure that you have tried to solve your problem by following the steps outlined in section Section 6.1.1. You may also try your SAM-ICE with another PC and, if possible, with another target system to see if it works there. If the device functions correctly, the USB setup on the original machine or your target hardware is the source of the problem, not SAM-ICE.

Make sure that you have the following information available for the support team:

- A detailed description of the problem
- SAM-ICE serial number
- Output of JLink.exe if available
- Your findings on the signal analysis
- Information about your target hardware (processor, board etc.)
7.1 Terminology

Adaptive clocking
A technique in which a clock signal is sent out by Multi-ICE and it waits for the returned clock before generating the next clock pulse. The technique allows the Multi-ICE interface unit to adapt to differing signal drive capabilities and differing cable lengths.

Application Program Interface
A specification of a set of procedures, functions, data structures, and constants that are used to interface two or more software components together.

Big-endian
Memory organization where the least significant byte of a word is at a higher address than the most significant byte. See Little-endian.

Cache cleaning
The process of writing dirty data in a cache to main memory.

Coprocessor
An additional processor that is used for certain operations, for example, for floating-point math calculations, signal processing, or memory management.

Dirty data
When referring to a processor data cache, data that has been written to the cache but has not been written to main memory. Only write-back caches can have dirty data, because a write-through cache writes data to the cache and to main memory simultaneously. The process of writing dirty data to main memory is called cache cleaning.

Dynamic Linked Library (DLL)
A collection of programs, any of which can be called when needed by an executing program. A small program that helps a larger program communicate with a device such as a printer or keyboard is often packaged as a DLL.

EmbeddedICE™
The additional hardware provided by debuggable ARM® processors to aid debugging.

Halfword
A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.
Host
A computer which provides data and other services to another computer. Especially, a computer providing debugging services to a target being debugged.

ICache
Instruction cache.

ICE Extension Unit
A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

ID
Identifier.

IEEE 1149.1
The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as JTAG.

Image
An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)
A device enabling access to and modification of the signals of a circuit while that circuit is operating.

Instruction Register
When referring to a TAP controller, a register that controls the operation of the TAP.

IR
See Instruction Register.

Joint Test Action Group (JTAG)
The name of the standards group which created the IEEE 1149.1 specification.

Little-endian
Memory organization where the least significant byte of a word is at a lower address than the most significant byte. See also Big-endian.

Memory Management Unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and translates virtual to physical addresses.

Multi-ICE®
Multi-processor EmbeddedICE interface. ARM® registered trademark.

nSRST
Abbreviation of System Reset. The electronic signal which causes the target system other than the TAP controller to be reset. This signal is known as nSYSRST in some other manuals. See also nTRST.

nTRST
Abbreviation of TAP Reset. The electronic signal that causes the target system TAP controller to be reset. This signal is known as nICERST in some other manuals. See also nSRST.
Open collector
A signal that may be actively driven LOW by one or more drivers, and is otherwise passively pulled HIGH. Also known as a “wired AND” signal.

Processor Core
The part of a microprocessor that reads instructions from memory and executes them, including the instruction fetch unit, arithmetic and logic unit and the register bank. It excludes optional coprocessors, caches, and the memory management unit.

Program Status Register (PSR)
Contains some information about the current program and some information about the current processor. Often, therefore, also referred to as Processor Status Register.

Is also referred to as Current PSR (CPSR), to emphasize the distinction between it and the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current function was called, and which will be restored when control is returned.

Remapping
Changing the address of physical memory or devices after the application has started executing. This is typically done to allow RAM to replace ROM once the initialization has been done.

Remote Debug Interface (RDI)
RDI is an open ARM® standard procedural interface between a debugger and the debug agent. The widest possible adoption of this standard is encouraged.

RTCK
Returned TCK. The signal which enables Adaptive Clocking.

RTOS
Real Time Operating System.

Scan Chain
A group of one or more registers from one or more TAP controllers connected between TDI and TDO, through which test data is shifted.

Semihosting
A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather than attempting to support the I/O itself.

SWI
Software Interrupt. An instruction that causes the processor to call a programer-specified subroutine. Used by ARM® to handle semihosting.

TAP Controller
Logic on a device which allows access to some or all of that device for test purposes. The circuit functionality is defined in IEEE1149.1.

Target
The actual processor (real silicon or simulated) on which the application program is running.
TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and TDO.

TDI

The electronic signal input to a TAP controller from the data source (upstream). Usually this is seen connecting the Multi-ICE Interface Unit to the first TAP controller.

TDO

The electronic signal output from a TAP controller to the data sink (downstream). Usually this is seen connecting the last TAP controller to the Multi-ICE Interface Unit.

Test Access Port (TAP)

The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO and nTRST (optional).

Transistor-transistor Logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or zero. LSI and VLSI logic often used TTL with HIGH logic level approaching +5V and LOW approaching 0V.

Watchpoint

A location within the image that will be monitored and that will cause execution to stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.
8.1 Reset Problem on the SAM-ICE V5.1

In certain cases, the reset signal generated by the microcontroller target may be inoperative due to the fact that the SAM-ICE reset output (JTAG connector pin 15) is a push-pull stage with a 100 Ohm serial resistor.

Workaround: Two workarounds are possible:

- Replace R19 by a Schottky diode with the same footprint (e.g. BAT54J).
- Remove the resistor.

This problem has been resolved in SAM-ICE V5.2.
9.1 AT91SAM-ICE User Guide Revision History

“rfo” indicates changes requested during the review and approval loop.

<table>
<thead>
<tr>
<th>Version</th>
<th>Comments</th>
<th>Change Request Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6206C</td>
<td>Section 1.1 "Overview" on page 1-1, Windows 7 added. Section 1.1.1 "Features of SAM-ICE" on page 1-1, Cortex-M3/Cortex-M4 added; JTAG speed 12MHz Back page updated. Removed ARM7/9 references</td>
<td>8113 rfo 8126</td>
</tr>
<tr>
<td>6206B</td>
<td>Section 1.1.1 "Features of SAM-ICE" on page 1-1, Support for adaptive clocking added Table 2-1, “Pinout,” pin 11, RTCK, Description rewritten.</td>
<td>5182</td>
</tr>
<tr>
<td>6206A</td>
<td>First Issue</td>
<td></td>
</tr>
</tbody>
</table>